Clinical Significance
Von Gierke disease, also known as glycogen storage disease type 1A, is an autosomal recessive disorder in which the enzyme glucose-6-phosphatase is deficient, leading to an inability to break down glycogen into glucose. It has an incidence of 1 in 100,000 live births. The clinical presentation is characteristically an infant, usually at the age of three to six months (although the age of presentation is variable), presenting with hypoglycemia and hepatomegaly, frequently accompanied by hyperlipidemia, hyperuricemia, and lactic acidosis. An enzyme assay and liver biopsy confirm the diagnosis. It is manageable through adequate dietary therapy for preventing long-term complications.
Pompe disease, also known as glycogen storage disease type II or acid maltase deficiency, is an autosomal recessive disorder resulting from mutations in the GAA gene on chromosome 17q25, coding for acid alpha-glucosidase, leading to lysosomal accumulation of glycogen in various tissues, but mostly affecting cardiac and skeletal muscles. The clinical presentation depends on the specific mutation and the resulting level of residual acid alpha-glucosidase activity. It is classified depending on the timing of presentation: classic infantile-onset Pompe disease, with an age of onset ≤ 12 months and late-onset Pompe disease, which manifesting any time after 12 months of age. The classic type characteristically demonstrates a rapidly progressive hypertrophic cardiomyopathy and left ventricular outflow obstruction, accompanied by muscle weakness, hypotonia, and respiratory distress. Motor development is delayed. The main cause of death is cardiac and respiratory failure, most commonly occurring before one year of age. The late-onset type usually lacks cardiac involvement; it presents with muscle weakness progressing to profound weakness and wasting, eventually requiring a wheelchair. Respiratory failure due to the involvement of the diaphragm is a common complication.
Cori Disease: also known as glycogen storage disease type III or limit dextrinosis, is a genetic disease caused by a mutation in the AGL gene located in the chromosome 1p21 encoding for glycogen debranching enzyme (amylo-1,6-glucosidase), leading to a deficient activity in the key enzyme responsible for glycogen degradation. The characteristic clinical presentation is hypoglycemia, hyperlipidemia, growth retardation, and hepatomegaly. It can subdivide into type IIIa, which present with hepatic and muscle involvement, that can develop myopathy and cardiomyopathy, and type IIIb, which primarily presents with liver disease
McArdle disease: also known as glycogen storage disease type V or myophosphorylase deficiency, is an autosomal recessive inborn error of skeletal muscle metabolism in which glycogen phosphorylase activity is affected, resulting in an inability to break down glycogen. It results from nonsense mutations in the PYGM-gene on chromosome 11, which codes for muscle glycogen-phosphorylase (myophosphorylase). Since muscle glycogen-derived glucose is unavailable during exercise, and glycogen is the primary fuel in exercise, exercise intolerance characterizes the clinical scenario. Vigorous exercise will often cause contractures and rhabdomyolysis accompanied by myoglobinuria.
Glycogenolysis activated by catecholamines, such as norepinephrine, has been implicated in memory consolidation.
No comments:
Post a Comment